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Abstract

Cultured rat cerebellar granule neurons were incubated with

low nanomolar concentrations of the protonophore carbonyl-

cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) to test

the hypothesis that ‘mild uncoupling’ could be neuroprotective

by decreasing oxidative stress. To quantify the uncoupling,

respiration and mitochondrial membrane potential (Dwm) were

determined in parallel as a function of FCCP concentration.

Dwm dropped by less than 10 mV before respiratory control

was lost. Conditions for the valid estimation of matrix super-

oxide levels were determined from the rate of oxidation of the

matrix-targeted fluorescent probe MitoSOX. No significant

change in the level of matrix superoxide could be detected on

addition of FCCP while respiratory control was retained,

although cytoplasmic superoxide levels measured by

dihydroethidium oxidation increased. ‘Mild uncoupling’ by

30 nmol/L FCCP did not alleviate neuronal dysregulation

induced by glutathione depletion and significantly enhanced

that due to menadione-induced oxidative stress. Low pro-

tonophore concentrations enhanced N-methyl-D-aspartate

receptor-induced delayed calcium deregulation consistent

with a decrease in the spare respiratory capacity available to

match the bioenergetic demand of chronic receptor activation.

It is concluded that the ‘mild uncoupling’ hypothesis is not

supported by this model.
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‘Mild uncoupling’, i.e., the enhancement of the natural
proton conductance of the inner mitochondrial membrane
(CmH

+) has been proposed as a protective mechanism in
neurons and other cells, lowering the mitochondrial mem-
brane potential (Dwm) and thus alleviating oxidative stress
[reviewed in Brand et al. (2004); Rousset et al. (2004);
Horvath et al. (2003); Nedergaard and Cannon (2003);
Andrews et al. (2005a)]. The hypothesis is based on two
observations; first, levels of reactive oxygen species such as
superoxide (O2

·)) generated by isolated mitochondria oxid-
izing succinate and other substrates that bypass Complex I
are very sensitive to protonophore-induced decreases in Dwm

(Korshunov et al. 1997; Votyakova and Reynolds 2001;
Lambert and Brand 2004). Secondly, many cells including
neurons express low levels of novel uncoupling proteins or
nUCPs with sequence homology to the brown adipose tissue
uncoupling protein (UCP1) and these are proposed to play a
similar mild uncoupling role in intact cells. While there is
significant phenomenological support for this hypothesis
(Diano et al. 2003; Mattiasson et al. 2003; Andrews et al.

2005b; Conti et al. 2005) there remain many unanswered
questions concerning the dependency of O2

·) on Dwm in
intact cells where mitochondria oxidize predominantly
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NADH-linked substrates such as, the capacity and activation
status of the nUCPs (Nicholls 2006b), and the consequence
of the increased CmH

+ on the ability of the mitochondria to
generate ATP.

Because of uncertainty as to the physiological activation
mechanism of the nUCPs (Nicholls 2006b) and whether they
even possess protonophoric activity (Nicholls 2006b) we have
modeled the putative nUCP-mediated uncoupling by investi-
gating the effects of low protonophore concentrations on the
inner membrane proton conductance, respiratory stimulation,
spare respiratory capacity, mitochondrial depolarization, mat-
rix and cytoplasmic superoxide levels and susceptibility to
oxidative stress and to glutamate excitoxicity of cultured rat
cerebellar granule neurons (CGNs) under conditions of
maximal N-methyl-D-aspartate (NMDA) receptor activation.

We have previously shown that acute glutathione depletion
of CGNs induces oxidative changes to the mitochondria that
inhibit the export of ATP to the cytoplasm and facilitate
spontaneous and glutamate-induced delayed Ca2+ deregula-
tion (DCD, the first irreversible step in necrotic cells death)
(Vesce et al. 2005). Similarly, the superoxide generated at the
mitochondria by redox cycling of menadione facilitates DCD
(Nicholls et al. 1998). The mild uncoupling hypothesis would
predict that low protonophore concentrations would provide a
measure of protection against these oxidative stresses.

In contrast, while oxidative stress is implicated in the
excitotoxic death of neurons exposed to chronic NMDA
receptor activation [for reviews see Coyle and Puttfarcken
(1993); Beal (1995); Rego and Oliveira (2003); Beal (1996)]
the consensus view that Ca2+ entry into the neuron and its
accumulation by mitochondria leads to increased superoxide
levels that promote necrotic cell death (Dugan et al. 1995;
Reynolds and Hastings 1995; Sengpiel et al. 1998) is
contradicted by our studies indicating that observed increases
in O2

·) levels during excitotoxic glutamate exposure are a
consequence and not a cause of DCD (Vesce et al. 2004).
‘Mild uncoupling’ would not therefore be predicted to protect
against glutamate-induced DCD. Instead, since Ca2+ and Na+

entry through the activated NMDA receptor imposes a heavy
ATP demand on the neuron for the re-extrusion of the cations
(Jekabsons and Nicholls 2004), the inevitable decrease in
mitochondrial ATP generating capacity resulting from the
increased proton leak could initiate an ‘ATP crisis’ in the cell
facilitating cell death. This is seen in the present study. Taking
these results together, it is difficult to understand how a
physiological uncoupling mechanism during oxidative or
excitotoxic stress could be neuroprotective.

Materials and methods

Reagents

MitoSOX Red, fluo-5 F, fluo-4FF, Mitotracker Green and dihydro-

ethidine were purchased from Molecular Probes (Eugene, OR,

USA). Manganese tetrakis (N-ethylpyridinium-2yl) porphyrin

(MnTE-2-PyP) was a gift from Dr Manisha Patel. All other reagents

were from Sigma–Aldrich (St Louis, MO, USA).

Culture and incubation of cerebellar granule neurons

Wistar rat CGNs were prepared as previously described (Courtney

et al. 1990) with modifications. In brief, cells were plated onto

coverslip-based 8-well chambers (LabTek, Naperville, IL, USA)

previously coated with 33 lg/mL polyethleneimine, at a density of

380 000 cells per 0.8 cm2 well for confocal imaging experiments, or

on 22 · 40 mm coverslips at a density of 3 · 106 cells for

respiration determination. Cultures were maintained in minimal

essential medium supplemented with 10% fetal bovine serum,

30 mmol/L glucose, 20 mmol/L KCl, 2 mmol/L glutamine, 50 units/

mL penicillin and 50 lg/mL streptomycin. 24 h after plating,

10 lmol/L cytosine arabinoside was added to inhibit growth of non-

neuronal cells. Cell cultures were maintained at 37�C in an incubator

with humidified atmosphere of 5% CO2/95% air and used for

experiments after 7–8 days in culture. Cells were washed and

experiments performed in incubation medium (3.5 mmol/L KCl,

120 mmol/L NaCl, 1.3 mmol/L CaCl2, 0.4 mmol/L KH2PO4,

5 mmol/L NaHCO3, 1.2 mmol/L Na2SO4, 15 mmol/L D-glucose

and 20 mmol/L Na-Tes, pH 7.4, 37�C) with further additions as

detailed.

In situ respirometry

Cells cultured on rectangular coverslips were assembled into a

Warner Instruments (Harndon, CT, USA) RC-30 closed imaging

chamber and mounted on an Olympus (Center Valley, PA, USA) IX

70 inverted fluorescence microscope. The chamber was perfused

with incubation medium at 50 lL/min and the downstream

depletion in oxygen content monitored with a miniature Clark-type

oxygen electrode as previously described (Jekabsons and Nicholls

2004). Where indicated the perfusion medium was supplemented

with nanomolar concentrations of FCCP.

Functional imaging

Cells were imaged on a Zeiss (Thornwood, NY, USA) Pascal

Confocal Axiovert 100 mol/L microscope. Images were collected

using a 20· air or a 63· oil objective. A custom built acrylic

chamber enclosed the entire microscope stage, allowing the

temperature of the objectives and cells to be maintained at 37�C.

In situ mitochondrial membrane potentials

Cerebellar granule neurons were equilibrated with 5 nmol/L

tetramethylrhodamine methyl ester (TMRM+) in incubation medium

for 60 min with the addition of 1 lmol/L tetraphenylboron to

facilitate equilibration across the plasma membrane (Ward et al.
2000). This concentration of TMRM+ is insufficient for dye

aggregation to occur within the mitochondrial matrix and in this

mode it is important to correct for changes in plasma membrane

potential, Dwp. However, in a previous study utilizing a simulta-

neous fluorescent anion to monitor Dwp (Nicholls 2006a) plasma

membrane potential was found to change by less than 2 mV on

addition of 250 nmol/L FCCP or respiratory chain inhibitors and

hence the anion indicator was omitted in the present study. Changes

in Dwm were quantified from changes in TMRM+ fluorescence using

a computer simulation (Nicholls 2006a) with the constants previ-
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ously determined for CGNs incubated under the present conditions.

Cells were excited in single-track mode with the 514 mm band of an

argon laser. Emission was determined with a 595–650 nm filter.

Delayed calcium deregulation

For experiments in which DCD was monitored following oxidative

stress, 13DIV CGNs were equilibrated with incubation buffer

containing additionally 0.5 lmol/L fluo-4FF-AM and 10 nmol/L

TMRM+ plus 1 lmol/L tetraphenylboron. Cells were then exposed

to 300 lmol/L menadione or 100 lmol/L monochlorobimane.

Regions of interest were defined to encompass the entire field of

�100 neurons and the time-course of decrease in TMRM+

fluorescence (reflecting plasma and/or mitochondrial depolarization)

and increase in fluo-4FF fluorescence (reflecting DCD) was

determined in three independent experiments. For glutamate

excitotoxicity cells were pre-incubated with 0.5 lmol/L Fluo4FF

and exposed to 200 lmol/L glutamate, 20 lmol/L glycine in the

presence of differing FCCP concentrations. DCD was monitored by

the increase in fluorescence in the entire field as above.

Calculation of effective proton conductance (CmH+) of in situ

mitochondria

CmH
+ was calculated by determining the proton flux through the

inner mitochondrial membrane from the respiratory rates multi-

plied by 10 for the estimated stoichiometry of proton extrusion by

the respiratory chain for Complex I substrates (Brand 2005). This

value was then divided by the estimated Dwm. Note that the

conductance is the sum of that due to the ATP synthase, the

endogenous proton leak and the added protonophore.

Subcellular localization of the oxidation products of

dihydroethidium and MitoSOX

MitoSOX Red dissolved in DMSO was used at a final concentration

not exceeding 0.2 lmol/L to avoid saturation of the mitochondrial

signal within the time-course of the experiment and the consequent

appearance of excess fluorescent oxidation product (termed here

‘Mitoethidium’) bound to nuclear DNA. CGNs were washed and

incubation buffer added. The probe was added to the cells

immediately at the start of each experiment and images in the focal

plane of the cell bodies or neurites captured with the Zeiss confocal

using a 63· oil-immersion objective. In order to monitor whole-cell

(rather then mitochondrial) superoxide levels, cells were incubated

in the standard incubation buffer with 0.1 lmol/L dihydroethidium

(DHE) reconstituted in DMSO added at the start of each experiment.

In order to remove any ethidium formed by prior spontaneous

oxidation Dowex cation exchange beads were added to the DHE

stock for 30 min immediately prior to use.

In situ mitochondrial and whole-cell superoxide levels

The fluorescence time-course was determined in single cell CGN

somata incubated with MitoSOX Red at 0.1 or 0.2 lmol/L (unless

otherwise stated) using a 20· air objective (excitation 543 nm

emission 595–650 nm). As MitoSOX is a lipid-permeant cation it

was assumed that it distributes across plasma and mitochondrial

membranes in a similar way to TMRM+, i.e., responsive to changes

in plasma or mitochondrial membrane potential. It should be noted

that the oxidized ‘Mitoethidium’ will carry two positive charges.

Where appropriate the rate of MitoSOX oxidation was corrected for

predicted changes in its matrix concentration determined from

parallel TMRM+ determinations using the computer simulation in

Nicholls 2006a. Briefly, the depolarization calculated from the

TMRM+ fluorescence was used to calculate the decreased accumu-

lation of MitoSOX in the matrix. Because the rate of oxidation of

MitoSOX is proportional to its matrix concentration the slope of the

fluorescence trace in experiments with sub-optimal Dwm were

increased to compensate for the lowered MitoSOX concentration.

This correction was considered insufficiently accurate for large

mitochondrial depolarizations induced by high protonophore con-

centrations.

MitoSOX and isolated mitochondria

Mouse liver mitochondria (0.25 mg protein/mL) obtained by

conventional differential centrifugation (Lambert and Brand 2004)

were incubated in medium containing 125 mmol/L KCl, 2 mmol/L

K2HPO4, 20 mmol/L HEPES, 5 mmol/L malate, 5 mmol/L pyru-

vate, 4 mmol/L MgCl2, 3 mmol/L ATP and 50 lmol/L EGTA,

37�C, pH 7.0 in a stirred microcuvette within a Perkin-Elmer LS55

spectrofluorimeter, excitation 477–492 nm, emission 570–590 nm.

10 lmol/L MitoSOX was added and allowed to equilibrate for

5 min before starting recording.

Results

Cerebellar granule neuron respiration and Dwm in the

presence of FCCP

When isolated mitochondria are titrated with protonophore
(Nicholls and Bernson 1977) there is an initial increase in
respiration with only a slight drop in Dw. However, once
uncontrolled respiration is attained, the inability of the
respiratory chain to compensate for a further increase in
conductance by enhancing proton extrusion means that Dw
falls sharply (Nicholls and Bernson 1977). It is therefore
important not to exceed the concentration at which respir-
atory control is lost in order to simulate a physiological
protonophoric conductance. The development of a ‘cell
respirometer’ to quantify the respiration of coverslip-attached
neurons (Jekabsons and Nicholls 2004) allows such a
titration to be quantified. Fig. 1 shows that the CGNs retain
respiratory control up to 100 nmol/L FCCP. However, with
each addition the ‘spare respiratory capacity’ decreases.
250 nmol/L FCCP (not shown) was sufficient to induce
uncontrolled respiration. Fig. 2a monitors the drops in Dwm

(quantified by the computer program in Nicholls 2006a) that
are induced by FCCP in parallel experiments. A substantial
drop in Dwm is only seen when respiration can no longer
accelerate to compensate for the increased proton leak (i.e.,
at 250 nmol/L or 750 nmol/L FCCP). Importantly, FCCP
concentrations that give substantial increases in respiration in
Fig. 1 (10–100 nmol/L) produced decreases in Dwm that are
almost below the level of detection (2–5 mV calculated from
the computer simulation). The ability to monitor Dwm and
respiration in parallel allows the inner membrane effective
proton conductance, CmH

+, to be calculated as a function of
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protonophore concentration by the application of ‘Ohm’s
Law’, i.e., the respiratory rate multiplied by the H+/O
stoichiometry (taken here to be 10) gives the proton current,
and this divided by the membrane potential gives the proton
conductance (Fig. 2b). The linear relationship is similar to
that previously published for isolated mitochondria (Nicholls
and Bernson 1977) except that the slope is shallower. The
intercept with the y-axis gives the basal proton conductance
of the inner membrane (including proton re-entry through the
ATP synthase).

The rate of electron transfer in the respiratory chain is a
roughly linear function of the disequilibrium between the
redox potential spans through Complexes I and III and the
free energy required to pump protons against the existing Dw,
or strictly the protonmotive force (Nicholls and Bernson
1977). The slope of the relationship between Dwm and

respiration reflects the ‘internal resistance’ of the respiratory
chain proton pumps, i.e., the magnitude of the thermody-
namic disequilibrium between the redox span and the
protonmotive force required for a given flux. Fig. 2c shows
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that the change in Dwm with respiratory rate is very small,
suggesting that a slight thermodynamic disequilibrium in the
complexes supports a rapid electron flux. Although changes
in DpH were not determined, this immediately suggests that
any decrease in Dwm to restrict superoxide generation can
only be bought at a substantial cost in terms of reserve ATP
generating capacity, which cannot exceed that driven by the
residual spare respiratory capacity, e.g., ‘b’ in Fig. 1.

Characterization of MitoSOX oxidation as a monitor of

mitochondrial matrix superoxide levels

MitoSOX is a derivative of DHE conjugated to triphenyl-
phosphonium that confers a positive charge leading to its
accumulation within the mitochondrial matrix. MitoSOX can
detect the increased levels of matrix superoxide in isolated
mitochondria with Complex III inhibition by antimycin A
(Fig. 3). As is the case for ethidium (the oxidation product of
DHE), the fluorescence of the oxidized ‘mitoethidium’ is
enhanced by intercalation into nucleic acids. It is therefore
important for cell studies that the binding capacity of
mitochondrial nucleic acids is not exceeded, as otherwise a
non-linear response could result. Fig. 4a shows the time

course of fluorescence development in single cell bodies
(mean signal from 10 cell somata) when CGNs were
continuously exposed to MitoSOX from 10 to 500 nmol/L.
A linear increase with time was observed for concentrations
from 10 to 100 nmol/L over a time range from 30 to 90 min
following probe addition. Importantly, the rate of increase in
fluorescence over this range was a linear function of the
external MitoSOX concentration, and hence of its concen-
tration in the matrix (Fig. 4b). As MitoSOX is a membrane-
permeant cation, it should distribute across the plasma and
mitochondrial membranes in response to Dwp and Dwm in a
similar way to membrane potential probes such as TMRM+.
This in turn raises a complication in the use of the probe,
namely that a change in either potential will influence the
sensitivity of the probe as a detector of matrix superoxide
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levels by altering its concentration in the matrix. Equilibra-
tion of the cells with concentrations of MitoSOX in excess of
0.25 lmol/L resulted in the appearance of nuclear fluores-
cence (data not shown).

To compare the location of Mitoethidium with ethidium
produced by oxidation of DHE, CGNs were labeled with
Mitotracker Green and incubated with MitoSOX or DHE
(Fig. 5). A close co-localization of the Mitoethidium
fluorescence with Mitotracker was seen in healthy cells
(Fig. 5a), although nuclear labeling was evident in damaged
cells (which were not included in the subsequent analyses).
In contrast, DHE produced extensive nuclear ethidium
labeling in all cell bodies with additional mitochondrial
fluorescence. The higher resolution images of DHE
(Fig. 5b) or Mitoethidium confirm this (Fig. 5c). It must
be emphasized that the appearance of somatic and neuritic
mitochondrial labeling in the presence of DHE does not
indicate that the probe was oxidized within the matrix. As
it is a membrane-permeant cation (Rottenberg 1984), a
proportion of cytoplasmically generated ethidium may be
accumulated by mitochondria, rather than binding to
nuclear DNA.

Responsiveness to generated superoxide and cell

permeant superoxide dismutase mimetics

Exogenous O2
·) generated by xanthine/xanthine oxidase

generates unphysiologically high concentrations of O2
·)

sufficient to produce a rapid increase in the oxidation of DHE
(Fig. 6a), while with MitoSOX the increase in oxidation rate
takes 20 min to become established (Fig. 6b), suggesting that
there is limited accessibility of exogenous O2

·) to the
mitochondrial matrix. However, the cell-permeant superox-
ide dismutase mimetic Mn-TE-2-PyP is effective in compet-
ing for superoxide with both probes and reduces the basal
levels of superoxide (Figs 6c and d).

Respiratory chain inhibitors and matrix superoxide levels

Rotenone and antimycin A increase superoxide levels in
isolated mitochondria oxidizing Complex I substrates (St
Pierre et al. 2002). Variable in vitro incubation conditions
may account for the lack of consensus as to the effect of
another Complex III inhibitor, myxothiazol (Raha et al.
2000; Starkov and Fiskum 2001). To validate the respon-
siveness of MitoSOX to endogenously generated matrix
superoxide, CGNs were exposed to the inhibitors (Fig. 7). As
the rate of increase in fluorescence is a linear function of the
probe concentration in the medium (Fig. 4b), and thus its
concentration in the matrix, it may be necessary to correct for
changes in Dwm and Dwp that will affect the uptake of
MitoSOX. In the case of the respiratory chain inhibitors, a
partial depolarization of the mitochondria occurs as Dwm

becomes supported by ATP synthase reversal (Nicholls
2006a). Previous studies with CGNs incubated under the
same conditions reported a 26 mV drop in Dwm on addition

of myxothiazol with no change in Dwp(Nicholls 2006a). The
present results (Fig. 7a) are consistent with this earlier
determination: depolarizations varying from )17 mV (rote-

N
eu

rit
es

S
om

at
a

HydroethidineMitosox

Mitotracker
Green Overlay

Hydroethidine

MitoSox Mitotracker Overlay

Overlay

N
eu

rit
es

N
eu

rit
es

S
om

a
S

om
a

(a)

(b)

(c)

Fig. 5 Subcellular localization of the oxidation products of MitoSOX

and DHE: cerebellar granule neurons were pre-incubated for 30 min

with 100 nmol/L Mitotracker Green together with either 200 nmol/L

MitoSOX or 200 nmol/L DHE. (a) wide-field image focusing on somata

and neurites. Note the presence of Mitoethidium labeling in the nuclei

of damaged cells. (b and c) high resolution images. Red, Mitoethidium

or ethidium, green, Mitotracker.

1624 L. I. Johnson-Cadwell et al.

Journal Compilation � 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 1619–1631
� 2007 The Authors



none) to )28 mV (myxothiazol) were determined. Fig. 7b
reports the effects of the inhibitors on matrix superoxide in
two ways. For each condition, ten cells were randomly
selected. The rate of increase in Mitoethidium fluorescence
was determined for each cell for the 30 min prior to addition
of inhibitor and for a 30 min period starting 10 min after
inhibitor addition, the delay allowing for any redistribution of
MitoSOX. The mean ratio of the rates (after/before) is
reported in Fig. 7b (solid bars). Because of the partial
depolarization of the mitochondria the results in Fig. 7b have
also been plotted after correcting for the estimated decrease
in matrix MitoSOX concentration assuming that the concen-
tration of the cationic MitoSOX parallels that of TMRM+ as
either membrane potential changes (open bars). The topology
of O2

·) release by Complex III is controversial but the
present data supports observations that a significant propor-
tion is released into the matrix (Brand 2005).

Proton conductance and matrix superoxide levels

The respirometer (Fig. 1) and Dwm traces (Fig. 2a) empha-
size that it is important to distinguish between those low
protonophore concentrations where some residual respirat-
ory control is retained (i.e., 0–100 nmol/L in the present
experiments) and concentrations that cannot be countered
by an increase in respiration (250 nmol/L and above). As
shown in Fig. 3c, the effect of the low concentrations is to
increase respiration with only a very slight depression in
Dwm, whereas beyond the threshold for uncontrolled
respiration Dwm drops rapidly as conductance cannot be
compensated by any further increase in proton current. The
rate of MitoSOX oxidation did not change significantly as

FCCP increases within the respiratory control range
(Fig. 8).

MitoSOX redistribution between matrix and cytoplasm

The large increase in Mitoethidium fluorescence following
addition of 250 nmol/L FCCP (Fig. 8a) requires comment. In
response to a large depolarization, sufficient MitoSOX would
be predicted to redistribute from matrix to cytoplasm,
allowing it to be oxidized by cytoplasmic O2. The resulting
Mitoethidium would be available to intercalate with nuclear
DNA with further fluorescence enhancement. Fig. 9 shows
that this redistribution can be seen with 250 nmol/L FCCP
which causes a prolonged decay in Dwm (Fig. 2a and
Nicholls 2006a). Thus MitoSOX is a valid monitor of matrix
O2

·) levels over a 30 mV range in Dwm, after correction for
its altered concentration in the matrix, but not for more
extensive depolarizations where nuclear DNA becomes
labeled. Redistribution to the nucleus was not seen with
rotenone, antimycin a or myxothiazol (not shown) where
Dwm stabilizes after decreasing by 17–28 mV (Fig. 7).

Proton conductance and cytoplasmic superoxide levels

Because DHE is uncharged it will not be selectively
accumulated in the mitochondrial matrix. The dual
localization of its oxidation product, ethidium, in the nucleus
and mitochondria (Fig. 5) does not necessarily reflect the
origin of its formation since a portion of the positively
charged ethidium formed in the cytoplasm could be trans-
ported into the mitochondria rather than being bound by
nuclear DNA. The rate of oxidation of DHE thus most likely
represents cytoplasmic and inter-membrane superoxide lev-
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els, perhaps generated by NADPH oxidase (Abramov et al.
2004). Over the range of FCCP concentrations that retain
residual respiratory control the rate of DHE oxidation
increases (Fig. 8b) in contrast to MitoSOX (Fig. 8a). When
the respiratory control threshold is exceeded by 250 nmol/L
FCCP, a further increase in superoxide is detected. Since the
distribution of the uncharged DHE will be independent of
Dwm no correction for changes in mitochondrial membrane
potential are required.

Proton conductance and sensitivity to oxidative and

excitotoxic stress

Although an increased mitochondrial proton conductance has
been proposed to enhance neuroprotection by lowering levels
of reactive oxygen species (Diano et al. 2003; Mattiasson
et al. 2003; Andrews et al. 2005b; Conti et al. 2005), the
results reported above suggest that the decrease in matrix

superoxide levels in intact neurons is at best marginal. To test
the consequences of mild uncoupling to counter oxidative
stress, we employed two mitochondrially related oxidative
stress paradigms: acute glutathione depletion (Fig. 10) which
inhibits ATP export from the in situmitochondria (Vesce et al.
2005) and mitochondrial-associated superoxide production by
menadione redox cycling, Fig. 11. The low affinity fluo4FF
only detects pathological increases in [Ca2+]c following
oxidative or excitotoxic DCD. To facilitate analysis regions
of interest enclosing at least 100 cell bodies were analyzed.
The increase in DCD, monitored by the Ca2+ indicated is
mirrored by the decrease in TMRM+ fluorescence reflecting a
collapse in Dwm (Vesce et al. 2005). It is apparent that this
concentration of FCCP, sufficient to utilize approximately
20% of the spare respiratory capacity of the neurons (Fig. 10)
afforded no protection to the neurons. A similar experiment
was performed in the presence of 10 lmol/L menadione to
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ods). Where indicated 1 lmol/L rotenone,
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A were added. Single cell fluorescence was
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calculated from the mean of 10 somata. (b) A

parallel experiment to the above was per-

formed with cells pre-incubated for 30 min

with 100 nmol/L MitoSOX prior to addition of

the respiratory chain inhibitors. Histograms

show relative matrix superoxide levels cal-

culated from the slope of the fluorescence

trace without (black bars) or with (white bars)

correction for the decline in Dwm.
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generate mitochondrially associated O2
·) by redox cycling

(Fig. 11). Here the presence of the protonophore significantly
potentiated the toxic effect of the menadione.

Finally, the effect of low FCCP concentrations on the ability
of CGNs to withstand prolonged NMDA receptor activation
was determined (Fig. 12). As in the previous experiments an
extended region of interest was used to quantify the fluo4FF
fluorescence. The controlled increase in [Ca2+]c induced by
receptor activation prior to DCD is insufficient to produce a
significant increase in fluorescence. No recovery of [Ca2+]c in

the deregulated cells was seen following addition of the
NMDA receptor inhibitor MK-801 (not shown).

Discussion

The primary aim of this study was to test the hypothesis that
subtle increases in inner mitochondrial membrane proton
conductance, modeling the action of novel putative UCPs,
could lower matrix superoxide levels and be neuroprotective
in an in vitro model of glutamate excitotoxicity. While there
is persuasive pathophysiological evidence that enhanced
expression of UCP2 has a neuroprotective role (for review
see Andrews et al. 2005a) much of the evidence for a
protonophoric role of the protein in this context seems in
conflict with established bioenergetic principles. The first
problem is that an enhanced respiration diagnostic of an
increased proton conductance is only reported in the presence
of massive non-physiological concentrations of free fatty
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acid, i.e., 300 lmol/L palmitate in the presence of 16 lmol/L
bovine serum albumin (Andrews et al. 2005b) or 30 lmol/L
palmitate in the absence of albumin (Mattiasson et al. 2003).
UCP2 over-expression is observed not to affect the basal
state 4 respiration (and hence the proton leak) in the absence
of palmitate (Mattiasson et al. 2003) and yet effects on ROS
generation are reported in the absence of fatty acids
(Mattiasson et al. 2003; Andrews et al. 2005b; Conti et al.
2005). The assumption in these studies is that, by extrapo-
lation from observations with isolated mitochondria oxid-
izing succinate, low protonophoric activity will dramatically
lower oxidative stress (Korshunov et al. 1997; Votyakova
and Reynolds 2001; Lambert and Brand 2004). However,
mitochondria within intact cells are never in the position of
purely oxidizing substrates that feed directly into the UQ

pool. Thus succinate is generated (and fumarate removed) by
NADH-linked dehydrogenases feeding into Complex I. It
follows that the supra maximal Dp seen with isolated
mitochondria with UQ-linked substrates (Nicholls 1977)
does not normally occur in real cells. Importantly, the rate of
superoxide generation by isolated mitochondria with NADH-
linked substrates is far lower (Brand et al. 2004; Tretter and
Adam-Vizi 2007). In intact isolated nerve terminals (syna-
ptosomes) superoxide levels are low and insensitive to
additions of uncouplers (Sipos et al. 2003). The present
results are consistent with this study, and illustrate clearly the
pitfalls in directly extrapolating from isolated mitochondrial
studies that do not mimic the in situ physiology.

Oxidative stress and glutamate excitotoxicity

There is a clear association between oxidative stress and the
susceptibility of cultured neurons to glutamate excitotoxicity

1 2 3

F
lu

o4
F

F
flu

or
es

ce
nc

e
(a

rb
. u

ni
ts

)

Time (h)

T
M

R
M

flu
or

es
ce

nc
e

(a
rb

.u
ni

ts
)

Fig. 10 Carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP)

(30 nmol/L) does not protect cerebellar granule neurons (CGNs)

against delayed Ca2+ deregulation induced by glutathione depletion.

CGNs were equilibrated with 5 nmol/L TMRM+ and fluo4FF. At

t = 0.100 lmol/L monochlorobimane was added to deplete glutathione

(Vesce et al. 2005) in the presence (closed symbols) or absence

(open symbols) of 30 nmol/L FCCP. From 1 h TMRM+ and fluo4FF

fluorescence was monitored from a region of interest comprising at

least 100 neurons. The final time-points represented 100% deregula-
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Results are the mean and SD of four experiments.

1628 L. I. Johnson-Cadwell et al.

Journal Compilation � 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 1619–1631
� 2007 The Authors



[reviewed in Nicholls (2004)]. The standard hypothesis has
been that calcium loaded mitochondria resulting from
pathological NMDA receptor activation generate excess
reactive oxygen species that damage the mitochondria and
lead to cell death. While this hypothesis is supported by
results showing an increase in reactive oxygen species
following NMDA receptor activation, single cell analysis
shows that this occurs only once the cell has initiated DCD
(Vesce et al. 2004). However, it is also apparent that
oxidative damage to the in situ mitochondria sufficient to
restrict their capacity to export ATP greatly potentiates the
susceptibility of the cells to DCD (Vesce et al. 2005). A
similar relationship is apparent in the present context of
controlled uncoupling. NMDA receptor activation substan-
tially increases the ATP demand of the mitochondria,
primarily because of the activation of the Na+/K+-ATPase
by Na+ entering through the receptor (Jekabsons and
Nicholls 2004). Any increase in proton conductance propor-
tionately decreases the maximal ATP generating capacity of
the mitochondria by syphoning off part of the proton current
through the leak instead of the ATP synthase (Fig. 1), and

stochastic cell death seems to result whenever a cell’s ATP
demand cannot be met by the mitochondria and glycolysis.
The failure of cell permeant antioxidants to protect against
DCD (Vesce et al. 2004) also supports the hypothesis that
insufficient ATP generating capacity rather than oxidative
stress is a more direct cause of DCD.

The exact event precipitating DCD is still debated.
Mitochondrial Ca2+ overload is clearly implicated (White
and Reynolds 1995; Ward et al. 2000) although CGNs
undergo glutamate-mediated DCD in media where Sr2+ is
substituted for Ca2+ (Wabnitz et al. 2006). However, Sr2+

does not induce a permeability transition in isolated mito-
chondria (Bernardi et al. 1992). Additionally, there is
controversy as to whether the mitochondrial permeability
pore inhibitor cyclosporin A does (Nieminen et al. 1996;
Schinder et al. 1996; White and Reynolds 1996; Vergun et al.
1999) or does not (Castilho et al. 1998; Isaev et al. 1998;
Chinopoulos et al. 2004) confer significant protection in this
model. Paradoxically, in neuronal preparations possessing
high glycolytic capacity, extensive mitochondrial depolariza-
tion by the combination of rotenone plus oligomycin (Budd
and Nicholls 1996; Castilho et al. 1998) or brief exposure
to high protonophore concentrations (Stout et al. 1998;
Mattiasson et al. 2003; Pivovarova et al. 2004; Korde et al.
2005) during glutamate exposure can protect the cells against
DCD. Under these conditions the mitochondria do not
accumulate Ca2+ (Budd and Nicholls 1996) and glycolysis
in these preparations is sufficiently active to maintain ATP
levels in the absence of oxidative phosphorylation (Budd and
Nicholls 1996).

Matrix superoxide levels

As DHE is uncharged, it should be present at roughly equal
concentrations in the cytoplasm and the mitochondrial matrix
and therefore detect superoxide in both compartments. The
availability of MitoSOX, a derivative of DHE conjugated to
triphenylphosphonium, opens the possibility for the direct
monitoring of superoxide levels inside the mitochondrial
matrix in intact cultured neurons. This study indicates that the
probe is a valid monitor of matrix superoxide levels as long as
its concentration within the matrix is controlled for changes in
plasma or mitochondrial membrane potentials, and as long as
the concentration of the oxidized Mitoethidium is sufficiently
low to allow its intercalation into mitochondrial DNA. The
present studies indicate that when respiratory chain inhibitors
are added, andwhen low concentrations of FCCP induce subtle
changes in mitochondrial membrane potential, it may be
important to correct for the altered concentration of MitoSox
within the mitochondrial matrix. The assumption is made that
the distribution of MitoSox across both the plasma and
mitochondrialmembranes is proportional to that of the cationic
TMRM+. Failure to make such a correction could lead to an
underestimation of superoxide levels under conditions where
there is a partial depolarization of either membrane.
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The relation between proton conductance and

mitochondrial membrane potential

The rate of electron flow through the proton pumping
complexes is a function of the thermodynamic disequilibrium
between the redox span and the protonmotive force. As the
effective proton conductance of the membrane increases, e.g.,
following FCCP addition, Dp falls and electron transport
accelerates. Previous studies with isolated mitochondria
showed that Dp decreased by only about 10% between state
4 (zero ATP turnover) and state 3 (maximal ATP turnover)
(Nicholls and Bernson 1977). Present results for in situ
mitochondria (Fig. 2) shows that Dwm changes by less than
2% as FCCP is titrated in until respiratory capacity is reached.
It is apparent that a critical threshold exists for protonophore
addition, beyondwhich increased respiratory activity is unable
to compensate for the increased CmH

+. As a result Dwm falls
precipitately . In the present design this occurs between
100 nmol/L and 250 nmol/L FCCP (see Figs 1, 2, 8 and 9).

In low potassiummedium the basal respiration of the CGN’s
accounts for about 30% of the mitochondrial respiratory
capacity (Jekabsons andNicholls 2006), thus themitochondria
are closer to state 4 than state 3. The very slight change in
membrane potential as FCCP is titrated in may underestimate
the change in total protonmotive force since the pH gradient is
not determined, and the matrix will be progressively acidified
by the addition of the protonophore. In the basal state addition
of the K+/H+ antiport ionophore nigericin hyperpolarizes the
membrane potential by about 30 mV, consistent with the
dissipation of the pH gradient of about )0.5 units (Nicholls
2006a). Nevertheless, the present results indicate that the
in situ mitochondria possess homeostatic mechanisms that
minimize the energy dependent drop in membrane potential.
This clearly does not favor a mechanism in which an increased
proton conductance is utilized to decrease membrane potential
and restrict the generation of reactive oxygen species.

All mitochondria possess an endogenous proton leak that
is regulated by Dp [reviewed in Brand (2005)]. The leak is
particularly apparent with ‘hyper-polarizing’ substrates that
feed electrons directly into the UQ pool. With isolated
mitochondria the leak is greatly reduced in state 3, and may
therefore act to limit the supra-maximal Dp that may be
achieved by such substrates. It is significant that the Dp at
which the endogenous proton leak becomes activated is close
to that reported for the activation of superoxide generation
during succinate oxidation by isolated mitochondria. As all
mitochondria possess this voltage gated proton leak, it is not
immediately apparent why an additional, UCP-mediated,
mechanism would be required to limit Dwm and superoxide
generation.

Conclusion

In the present model of glutamate excitotoxicity the classic
‘uncoupling’ effects of low protonophore concentrations,

namely an increase in proton conductance and respiration
and a proportionate decrease in the spare respiratory capacity
available for peak demands for ATP synthesis, for example to
extrude the Na+ entering via a pathologically activated
NMDA receptor, greatly outweigh any marginal decrease in
matrix superoxide levels. This study indicates that aspects of
the ‘mild uncoupling’ hypothesis, whereby novel UCPs are
proposed to be neuroprotective, may need to be re-examined
in view of the fact that the dominant effect of uncouplers is to
uncouple ATP synthesis from electron transport.
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