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In brood parasitic cowbirds, hippocampus (Hp) size is correlated with environmental spatial memory
demands. Searching for host nests is the presumed causal factor influencing cowbird Hp size, because Hp
volumes vary across species, sexes, and seasons according to nest-searching participation. Brown-headed
cowbirds have female-only nest searching and, at least in the eastern subspecies, a larger Hp in females
than in males, suggesting that nest searching influences cowbird Hp size. We predicted that female
brown-headed cowbirds housed in aviaries lacking host nests would have a smaller Hp than wild-caught
females whereas males would be unaffected. We found that the Hp was smaller in captive females, but
not males, compared to their wild-caught counterparts. This did not appear to be due to general effects
of an impoverished environment on all brain regions. Our results imply that interruption of nest searching
in cowbirds prevents seasonal increase in Hp size in females. Future studies should isolate which
behavioral differences between wild and captive birds contributed to captivity-induced changes in Hp
volume in females while not affecting males.
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Variation in environmental spatial demands is related to varia-
tion in hippocampus (Hp) size among closely related species,
between sexes, and across seasons in mammalian, avian, and
reptilian species. For example, food-storing behaviors in birds
(Clayton, 1995a; Hampton, Sherry, Shettleworth, Kurgel, & Ivy,
1995; Hampton & Shettleworth, 1996; Healy & Krebs, 1992;
Krebs, Sherry, Healy, Perry, & Vaccarion, 1989; Sherry, Vac-
carino, Buckenham, & Herz, 1989; Volman, Grubb, & Schuett,
1997) and rodents (Jacobs, 1992; Jacobs & Spencer, 1994),

foraging-related rate of movement in lacertid lizards (Day, Crews,
& Wilczynski, 1999), home-range size in voles (Gaulin, 1992;
Jacobs, Gaulin, Sherry, & Hoffman, 1990; Sherry, Jacobs, &
Gaulin, 1992), and breeding-habitat complexity in petrels (Abbott,
Walsh, Storey, Stenhause, & Harley, 1999) are all associated with
enlarged Hp size, presumably due to the demands of spatial mem-
ory. In addition, seasonal variation in food-storing demands is
associated with seasonal changes in Hp volume (Smulders, Sasson,
& DeVoogd, 1995) in black-capped chickadees and rodents (Ja-
cobs, 1996). Males have a larger Hp than females in a vole species
in which males have larger home ranges but not in vole species
that do not have sex differences in home range (Gaulin, 1992).
These results provide evidence that environmental or experiential
seasonal changes can alter Hp volume and that natural and sexual
selection on a variety of spatial-related skills has produced a larger
Hp in some species or sexes than in others.

Although correlations of Hp volume with ecological demands
for spatial ability are numerous, the specific mechanisms that
contribute to such adult variation in the volume of the Hp are not
well understood. We do know that species-specific reactions to
spatial experience (food storing or other spatial learning tasks)
during development contribute to differences between some spe-
cies of food-storing versus non-food-storing birds. In adults, food-
storing experience alone does not appear to alter the volume of the
Hp in some species (Cristol, 1996); although combined with other
seasonal effects, it may increase Hp volume, cell number, or new
cell recruitment in other species such as the black-capped chick-
adee (Barnea & Nottebohm, 1994; Smulders et al., 1995; Smul-
ders, Shiflett, Sperling, & DeVoogd, 2000). Changes in Hp neu-
roanatomy across seasons that are correlated with seasonal demand
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for spatial memory appear to be triggered directly by changes in
photoperiod in some mammals (Prendergast, Nelson, & Zucker,
2002). In eastern gray squirrels, however, seasonal changes in
photoperiod and food storing are not accompanied by changes in
Hp volume (Lavenex, Steele, & Jacobs, 2000). In black-capped
chickadees, a food-storing bird with seasonal changes in both Hp
volume and food-storing behavior, photoperiod does not appear to
induce changes in Hp volume or cell proliferation even though
photoperiod can induce changes in food-storing behavior
(Macdougall-Shackleton, Sherry, Clark, Pinkus, & Hernandez,
2003). Furthermore, causal links between behavioral traits that are
related to species and sex differences in Hp size, for example, food
storing and mate searching, and actual Hp growth or attrition have
not been established in most cases. Thus, more studies are needed
that examine mechanisms for changes in Hp volume and that
demonstrate that changes in the behavior proposed to alter Hp
volume actually do so.

Cowbirds provide an interesting group in which to examine
the link between behavior and Hp volume. These brood para-
sites show species, sex, and seasonal variation in Hp volume in
concordance with demands for locating host nests to parasitize
when compared to other species in the same family, the Icteri-
dae, that are not parasitic (Clayton & Reboreda, 1997; Re-
boreda, Clayton, & Kacelnik, 1996; Sherry, Forbes, Khurgel, &
Ivy, 1993). In addition, males and females search for host nests
together in some cowbird species whereas only the female
searches for hosts in others. The Hp is larger in females than in
males only in those species studied in which the females search
for nests alone (Reboreda et al., 1996; Sherry et al., 1993). This
is a particularly interesting result as it counters the more com-
mon male bias in Hp volume in rodents (Roof & Havens, 1992).
Furthermore, Hp size in two species of parasitic cowbirds
appears to be seasonally plastic as Hp volume is larger in the
summer when breeding and thus nest searching is taking place
than in the winter nonbreeding season. Additionally, sex dif-
ferences in Hp size seen in the breeding season are not found in
the nonbreeding season in a species with female-only nest
searching, the shiny cowbird (Molothrus bonariensis; Clayton
& Reboreda, 1997).

Together, these results suggest that searching for nests is related
to Hp volume. Thus, we hypothesized that preventing cowbirds
from searching for nests should result in a decrease in Hp volume.
To prevent nest searching while reducing the general effects of
deprivation (Gage, 2002; McEwen, 1999; Rosenzweig & Bennett,
1996), we held brown-headed cowbirds in large mixed-sex outdoor
aviaries where they could have normal social interactions but
without the provision of host nests for egg laying. Additionally, we
created a specifically impoverished group by transferring some
females from the outdoor aviaries to comparatively small isolation
chambers. Because we used brown-headed cowbirds for this study,
we expected females, but not males, to be sensitive to prevention
from nest searching as only females normally search for nests.
Thus, we predicted that preventing birds from nest searching by
holding them in captivity would selectively decrease the volume of
the female Hp but not the male Hp compared to wild-caught
counterparts. If general deprivation is the main difference between
captive and wild-caught birds, then both sexes should show de-
creased Hp volume as a result of captive housing and females

housed in isolation chambers should show a greater decrease in Hp
volume than aviary-housed captive males and females.

Method

Subjects and Housing Conditions

Thirty-two brown-headed cowbirds (M. ater obscurus) were
captured in walk-in traps in southern California in 1999 and 2000
along the Santa Clara River or in Simi Valley (both in Ventura
County) as part of a federal- and state-run cowbird population
control program designed to aid the endangered least Bell’s vireo
(Vireo bellii pusillus; Griffith & Griffith, 2000). Because of pos-
sible population differences in ecology and neuroanatomy (Uye-
hara & Nairns, 1992) in cowbirds and because differences in
neuroanatomy are known to occur as a result of differential expe-
rience and/or age (Clayton, 1995b; Healy, Gwinner, & Krebs,
1996), we attempted to select only adult sexually mature birds that
were from the local Ventura population using wing length to
identify subspecies and plumage characteristics to identify age
classes (Fleischer & Rothstein, 1988; Lowther, 1993). Among
adult males, second year (SY) individuals and after second year
(ASY) males show different patterns of daily movements (Roth-
stein, Yokel, & Fleischer, 1986), so we selected only ASY males.
All females were adults, minimum SY, as determined by wing
cord, but they could not be further aged into SY and ASY. Because
all females mate and parasitize nests as yearlings (Darley, 1983;
Lowther, 1993; Payne, 1973; Rothstein et al., 1986), all were in
breeding condition and were presumed to be engaged in nest
searching when caught. It is possible that females were, on aver-
age, younger than males. However, all birds were breeding adults
and thus brains were unlikely to be more plastic in females because
of age. All birds were killed between May and June, a period that
coincides with the breeding season in California cowbirds (Payne,
1973).

We had three conditions: wild-caught birds, birds held captive in
aviaries, and birds housed in isolation chambers (females only).
Captive birds were six males (CM) and five females (CF) captured
between late April and early July of 1999 and housed in a large
outdoor aviary (1.2 � 2.7 � 6.0 m) in mixed-sex groups until
killed between May 12 and June 30 of 2000, approximately 1 year
after their capture. An additional five females (ISO), similarly held
in the outdoor aviaries for 1 year, were placed in visual and
acoustic isolation chambers (internal diameter 53 � 28 � 30 cm)
on natural photoperiods on April 1, 2000, about when breeding
normally begins in southern California. These birds were killed 5
weeks later on May 8, 2000. Wild-caught breeding birds, 10 males
(WCM) and 6 females (WCF) were captured between May 8 and
June 20 of 2000 and were killed within 10 days of capture (a
nonsignificant negative correlation between Hp size and capture
time for WCM and WCF suggest this brief captivity was insuffi-
cient to alter Hp size). As wild-caught birds came in from the field,
we killed them in matched pairs with captive birds. All birds in
both years were caught at one of the two sites in Ventura County.
All birds were given food (Roudybush Maintenance Crumble;
Roudybush, Woodland, California) and water ad libitum. All con-
ditions were approved by the University of California Institutional
Animal Care and Use Committee (Protocol 185). Captive males
and females used in this study were all in apparent breeding
condition based on courting and mating behaviors.
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Histology and Morphometrics

Birds were injected intramuscularly with a ketamine (50 mg/
kg)/xylazine (20 mg/kg) mixture followed by 8 mg/kg sodium
pentobarbital and perfused transcardially with 0.8% saline and
neutral buffered formalin (NBF). Brains were postfixed in NBF for
11 or 12 days then transferred to 30% sucrose in 0.1 M Phosphate
Buffer until sinking. Brains were cut in the coronal plane on a
cryostat at 40 �m; every fifth section was mounted on a slide and
Nissl stained with cresyl violet. Slides were coded so that individ-
uals doing measurements were unaware of the sex and treatment of
individuals. We computed the volume of the Hp, telencephalon
(Tel), and nucleus rotundus (NRot), a visual, thalamic nucleus.
The Tel and NRot were measured as control regions to determine
whether captivity affected brain regions outside the Hp and to
control for shrinkage of tissue during processing by adjusting Hp
volume for Tel volume. Volume was computed by capturing
images of slices with MRGrab (Carl Zeiss, Inc., Thornwood, NY)
software via a light-microscope equipped with an AxioCam MRc
digital camera (Zeiss) and measuring surface areas. Our sampling
procedures and volume calculations followed standard stereologi-
cal methods (Gundersen et al., 1988). Standard neuroanatomical
landmarks were used to delineate the boundaries of the brain
regions. In birds, the Hp is bounded by the midline, the lateral
ventricle, and the brain surface. Laterally it can be distinguished
from the apical part of the hyperpallium (HA) by an obvious
increase in cell density at the start of the HA (Figure 1A; Day,
Westcott, & Olster, 2005; Sherry et al., 1989). Following previous
work with brown-headed cowbirds, we measured the Tel from the
first slice in which Hp appeared to the last slice in which we
measured Hp (Sherry et al., 1993). On sections in which the
telencephalic hemispheres were joined with the diencephalon,
prominent markers such as the occipito-mesencephalic tract and
the anterior commissure were used to determine telencephalic
boundaries (Brenowitz, Lent, & Kroodsma, 1995). The NRot
boundaries are particularly clear in Nissl-stained sections (Figure
1B). Hp and NRot were measured on every mounted slice (dis-
tance between slices 200 �m), and Tel was measured on every
other mounted slice (distance between slices 400 �m). We mea-
sured both the left and right Hp and Tel on four wild-caught male
brains and found no significant laterality (paired t test, p � .05). In
addition, no laterality in Hp volume was found in a previous study
that measured six male and five female brown-headed cowbirds
(Uyehara & Nairns, 1992). However, the left eye–right hemisphere
system in birds has been shown to perform more spatial informa-

tion processing than the other hemisphere (Clayton & Krebs,
1993), and sex differences in Hp volume favoring males occur
only in the right dentate gyrus of rats (Roof, 1995; Roof & Havens,
1992; Tabibnia, Cooke, & Breedlove, 1999). Thus, we continued
measurements only on the right, more “spatial,” side of all brains,
acknowledging the possibility that we could miss laterality differ-
ences if they exist in this species. After all brain regions were
measured, we randomly selected four slices per brain region from
each bird and remeasured these areas. All regions showed a mean
variation of less than 3.5% between first and second measure-
ments.

Statistical Analyses

Whether comparisons were significant or not was not affected
by log transformation, thus we used raw values. We subtracted the
volume of the Hp from Tel volumes (TelH) so that these two
measures were independent. To compare volumes of each brain
region across groups, we performed one-way analyses of variance
(ANOVAs) followed by Bonferroni/Dunn post hoc tests using an
alpha level corrected for all possible pairwise comparisons in
SuperAnova (Version 1.11; Abacus Concepts, Berkeley, CA).
Variation in the size of the Tel can affect Hp volume; therefore, we
used simple regressions to examine the relationship between Hp
volume and TelH volume using Statview (Version 5.0; SAS Insti-
tute, Cary, NC). Note that simple regression analyses showed that
weight did not covary with Hp size, and thus weight was not
considered further in analyses. To examine changes in brain region
volume adjusted for changes in the covariate, we used a general
linear model (GLM; SPSS 14; SPSS Inc., Chicago, IL). To deter-
mine whether we met the assumptions for performing GLM, we
first ran the model with a covariate–treatment group interaction
term to verify that slopes were not significantly heterogeneous
across groups. We then ran the model without the covariate inter-
action term and used Levene’s test to check for significant differ-
ence in error variance across groups before interpreting results.
GLM was followed by comparison of covariate-adjusted means
using Sidak test adjusting for multiple comparisons. For all com-
parisons, the alpha or multiple-comparison corrected alpha was set
at p � .05. Error bars on graphs and error values reported in text
are standard errors of the mean.

Results

Hp and Tel

The absolute volume of the Hp was smaller in the two captive
female groups (CF � 8.6 � 0.3, ISO � 9.1 � 0.4) than in
wild-caught females (WCF � 11 � 0.3) and the two male groups
(CM � 10.8 � 0.3, WCM � 10.4 � 0.3; see Figure 2): main group
effect, F(4, 27) � 9.93, p � .0001, pairwise values all ps � .0001.
Hp volume was not significantly different in CM and WCM. Thus,
captivity does not appear to alter the size of the male Hp, but both
groups of captive females (CF and ISO) had a smaller Hp than
wild females. The TelH was larger in the two male groups (CM �
250.3 � 7.5, WCM � 249.4 � 6.1) compared to the two captive
female groups (CF � 209.2 � 10.3, ISO � 207.5 � 4.5; see
Figure 3), F(4, 27) � 8.98, p � .0001, pairwise values all ps �
.0002. The TelH of WCF (234.8 � 4.5) was not significantly

Figure 1. Photomicrographs of hippocampus (A) and nucleus rotundus
(B). In A, arrows indicate hippocampus boundaries. The left section is from
a captive female (CF) and right section is from a wild-caught female
(WCF). We attempted to take photos at the same rostral-caudal position for
CF and WCF.
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different from any other group (post hoc p value was not signifi-
cant). Thus, TelH size is not altered by captivity in males or
females. However, both CF and ISO have a smaller TelH volume
compared to both CM and WCM.

We found a significant positive relationship between Hp and
TelH (see Figure 4; R2 � 0.45, p � .0001). We thus examined
changes in Hp volume controlling for changes in TelH, the relative
Hp volume (RHp). There was no significant interaction between
TelH and treatment, F(4, 22) � 1.01, p � .42. Thus, the interaction
term was removed. Variance in RHp was not significantly heter-
ogeneous among groups, F(4, 27) � 0.22, p � .93. There was a
significant treatment effect, F(4, 26) � 4.47, p � .007 (see Figure
5). Post hoc test showed that WCF had a larger RHp volume than
CF. No other groups differed from each other (WCF vs. WCM,
p � .12). Thus, aviary housing affected females but not males.

Nucleus Rotundus

There were no significant differences in the size of the NRot,
our control region, across groups (CF � 1.24 � 0.36, CM �
1.56 � 0.45, WCF � 1.29 � 0.32, WCM � 1.80 � 0.21, ISO �
1.58 � 0.26), F(4, 27) � 0.62, ns. The size of NRot was not
correlated with Tel volume (R2 � 0.001, p � .88), therefore we did
not need to perform analyses adjusting for Tel size. However, we
note that correcting NRot volume for Tel volume as we did for Hp
did not result in significant differences among groups.

Discussion

Our results demonstrate sex-specific changes in the size of brain
regions in birds and agree with the hypothesis that experience with
nest searching is necessary for the seasonal increase of Hp volume
seen in brood-parasitic female cowbirds (Clayton & Reboreda,
1997). Female brown-headed cowbirds held for 1 year in large
outdoor aviaries and killed during the breeding season had a
significantly smaller Hp and Hp volume controlling for Tel size
than WCF. Hp volume was similar in CM and WCM brown-
headed cowbirds. In addition to these sex-specific effects, the
effects of captivity also appeared to be specific to the Hp. Al-
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Figure 2. Mean hippocampus (Hp) volume for captive males (CM) and
females (CF), wild-caught males (WCM) and females (WCF), and isolated
females (ISO). Asterisk above brackets indicates that the hippocampus was
significantly smaller in both captive female groups than in WCF as well as
CM and WCM. The two male groups did not differ from each other.
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Figure 3. Mean telencephalon volume (Tel Vol) minus hippocampus
(Hp) volume (TelH) for captive males (CM) and females (CF), wild-caught
males (WCM) and females (WCF), and isolated females (ISO). Asterisk
above brackets indicates that TelH size is smaller in both captive female
groups compared to both male groups. TelH size did not differ among
female groups.
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Figure 4. Mean hippocampus (Hp) volume plotted against telencephalon
(Tel) volume (minus Hp volume) for groups studied (R2 � 0.45, p �
.0001). CF � captive females; CM � captive males; ISO � isolated
females; WCF � wild-caught females; WCM � wild-caught males.
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Figure 5. Hippocampal volume (Hp Vol) controlling for the effects of
telencephalon volume (Tele Vol; minus Hp Vol). Hp Vol is significantly
smaller in captive females than in wild- caught females. ISO � isolated
females; CF � captive females; WCF � wild-caught females; CM �
captive males; WCM � wild-caught males.
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though the Tel (minus Hp) of CF and ISO was smaller than either
male group, there was no significant change in this Tel volume in
CF or ISO compared to WCF or between CM and WCM. In
addition, neither captive conditions nor isolating conditions had
any effect on the volume of the NRot.

Changes in Hp volume did not appear to be the result of general
effects of an impoverished environment. CM did not have a
smaller Hp than WCM. ISO had a Hp volume reduced in size
compared to WCF, but this treatment did not cause an additional
reduction in Hp volume compared to CF (although it should be
noted that longer isolation periods could possibly reduce Hp vol-
ume). Furthermore, when adjustments for changes in Tel size were
made, Hp volume did not differ between ISO and WCF. Thus, it
appears that housing cowbirds in large outdoor aviaries without
host nests induces either a female-specific reduction in Hp volume
compared to wild-caught cowbirds or a failure of the Hp to grow
in captive birds compare to wild-caught birds. Although we cannot
differentiate between these two possibilities with these data, we
believe it is more likely that differences between WCF and CF are
due to a lack of seasonal increase in Hp volume in CF rather than
an induced decrease in Hp volume in CF. Although not yet
demonstrated for brown-headed cowbirds, the nest searching
sex(s) of other species of cowbirds have a larger Hp in the
breeding season than in the nonbreeding season (Clayton & Re-
boreda, 1997). We propose that CF did not undergo the normal
expansion of the Hp that occurs during the breeding season in
WCF. Further, experiments will be necessary to isolate the partic-
ular variable that led to differences between CF and WCF; possi-
bilities include nest searching per se, behaviors otherwise related
to female breeding, physiological events altered by captivity in
females only, and sex-specific reactions to captive conditions.

Experience and the Hp

Any experience-driven change in Hp volume, whether as a
result of nest searching or some related behavior, is an example of
adult plasticity of the Hp. Experience-driven changes in neuroana-
tomical and neurochemical characteristics of the Hp occur as a
result of environmental enrichment, learning regimes, and exercise
in both young and adult laboratory rodents (Kempermann, Kuhn,
& Gage, 1997; Kozorovitskiy et al., 2005; Rosenzweig & Bennett,
1996; van Praag, Kempermann, & Gage, 1999). In birds,
experience-driven changes in Hp volume have been demonstrated
in juvenile marsh tits, a food-storing bird (Clayton, 1995b, 1996).
Although adult Hp plasticity in food-storing birds is supported by
studies using black-capped chickadees (Smulders et al., 1995, but
see Cristol, 1996), it appears that captive conditions more restric-
tive than our outdoor aviaries (smaller aviary, all males) can result
in a decrease in Hp volume (Barnea & Nottebohm, 1994; Smul-
ders, Casto, Nolan, Ketterson, & DeVoogd, 2000). It is not clear
what social or environmental factors excluded by captivity may
have played a role in changes in Hp volume, but these studies
suggest that experiences in addition to exclusion from nest search-
ing can alter Hp volume. Thus, we must consider the possibility
that experience with nest searching is not the driving force behind
the changes we see in Hp size. Instead, the behavior thought to
drive changes in Hp volume may coincide with other behavioral or
physiological variables that are the actual cause of the sex-specific
neuroanatomical changes.

Behavioral Variables Altered by Captivity

In addition to prevention of nest searching, there are several
behaviors prevented in captivity that might affect females more
than males. These include changes in the ability to form domi-
nance hierarchies and to defend breeding territories. In the wild,
both male and female cowbirds have dominance hierarchies. In
captivity, the dominant male in a cage (Dufty & Wingfield, 1986)
shows mate guarding and excludes subordinate males from court-
ing females (Rothstein et al., 1986). Females show less clearly
defined dominance in captivity (Rothstein et al., 1986), possibly
because the resources that they normally defend, host nests, are
absent. The lack of spatial defense could affect both spatial mem-
ory requirements and hormone profiles that, in turn, could affect
Hp size (Galea, Spritzer, Barker, & Pawluski, 2006; Parducz et al.,
2006). In fact, one could suggest that while females were pre-
vented from nest searching and the tracking of other females,
males were still involved in keeping track of females and other
males—a task that is also likely dependent on the Hp (Day, 2003;
Volman et al., 1997). In addition, the establishment of dominance
itself can affect Hp cell proliferation or incorporation (Kozoro-
vitskiy & Gould, 2004; Pravosudov & Omanska, 2005). Dominant
rats have more new cells in the Hp than subordinates (Kozoro-
vitskiy & Gould, 2004; Pravosudov & Omanska, 2005). Similarly,
in mountain chickadees (Poecile gambeli), dominant birds show
higher levels of cell proliferation in the Hp (Pravosudov & Oman-
ska, 2005). It will be important to determine if the effects seen in
mountain chickadees generalize to female cowbirds.

In addition to these social behaviors, captivity has a direct effect
on a female cowbird’s reproductive condition. Although CM still
court and copulate in a manner similar to that seen in free-ranging
males, females show a dramatic decrease in egg laying (S. I.
Rothstein, personal communication, March 2007). Wild female
cowbirds normally lay 40 eggs or more over an 8-week breeding
season (Rothstein et al., 1986), which is far more than the average
passerine. This lengthy and robust egg-laying period is associated
with longer elevation of estrogen (estradiol, E2) levels than in most
passerines (Dufty & Wingfield, 1986). Although it is unclear
exactly how a reduction in egg laying could affect Hp volume, it
is likely that CF experience an altered hormonal profile compared
to WCF, which in turn could affect Hp volume as discussed in the
following section.

Hormones and Hp

Hp volume in female cowbirds may be influenced by changes in
E2 in a manner similar to the that in mammalian species where E2

is associated with increased neurogenesis, dendritic arborization,
and synaptogenesis in the Hp (Galea et al., 2006; Parducz et al.,
2006). In birds, we know that testosterone (T) and its metabolites,
E2 and 5�-dihydrotestosterone (DHT), influence the anatomy of
the vocal control circuit in adult songbird species (DeVoogd &
Nottebohm, 1981; Schlinger, 1997; Tramontin & Brenowitz,
2000). In addition, E2 appears to regulate apoptosis after Hp
damage in the zebra finch (Saldanha, Rohmann, Coomaralingam,
& Wynne, 2004). Last, the estrogen synthetic enzyme, aromatase,
is abundant in brown-headed cowbird Hp (Saldanah & Schlinger,
1997). Thus, it is possible that differences in E2 or T levels
between WCF and CF affected Hp size. It would not be surprising
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if any housing-induced changes in hormones altered Hp volume in
female cowbirds only, given that effects of E2 on Hp neurogenesis,
spinogenesis, and synaptogenesis are low or lacking in male com-
pared to female rats (Galea et al., 2006; Parducz et al., 2006).

Even if E2 affects Hp morphology similarly in male and female
cowbirds, unlike the case in rats (Galea et al., 2006; Parducz et al.,
2006), captivity could differentially affect male and female hor-
mone profiles. Although both CM and CF were in apparent breed-
ing condition, it is possible that there were sex-specific effects of
housing on hormonal profiles in our cowbirds. As mentioned, there
were likely greater differences in reproductive condition between
WCF and CF than between WCM and CM as a result of reduced
egg laying that could potentially affect female hormonal profiles.
In addition, females normally have elevated T levels related to
defense of breeding areas (Dufty & Wingfield, 1986). Thus, a lack
of this defense could have altered the secretion of T in females.
Last, it has previously been shown that peak T levels are similar
between WCM and CM during the time that we killed birds
(Rothstein et al., 1986). Comparable studies have not been done in
female cowbirds. Because hormonal state can alter Hp neuroanat-
omy, future studies attempting to isolate how captivity alters
female Hp while not affecting male Hp should include measure-
ment of levels of T, E2, and the estrogen synthetic enzyme,
aromatase, in blood and brain of males and females. Experiments
aimed at determining the direct effects of E2 on the Hp in cowbirds
and other species are also warranted.

Cowbird Population Differences

It is important to acknowledge that, unlike studies in the eastern
brown-headed cowbird (M. a. ater; Sherry et al., 1993), our study
and two others (Uyehara, 1994; Uyehara & Nairns, 1992) that
examined the western subspecies (M. a. obscurus) did not find that
WCF had a significantly larger Hp than WCM. These discrepan-
cies could result from methodological differences. However, if we

perform our statistical comparison exactly as Sherry et al. (1993)
did, comparing only male to females and including weight as a
covariate along with Tel, p � .13, and without weight as a
covariate, p � .08. In Uyehara’s (1994) two studies that used
statistics similar to Sherry et al. (1993), sex differences for western
cowbirds were p � .25 and p � .15. Thus, at the very least, there
appears to be a reduction in the extent of sex differences in the
western subspecies compared to the eastern subspecies using iden-
tical methods.1 In addition to decreased sexual dimorphism, Hp
size and Tel size appear to be larger in M. a. obscurus than M. a.
ater despite the smaller body size of M. a. obscurus compared to
M. a. ater (see Table 1). Pronounced differences in habitat use,
such as the larger ranges in the western than eastern subspecies,
could account for the population differences observed in Hp size
and extent of sexual dimorphism (see Table 1).

However, if M. a. obscurus has a less sexual dimorphic Hp than
M. a. ater because both males and females have large feeding
ranges, why would captivity in the present study not reduce the
size of the male Hp given the enormous reduction in home range?
Both male and female screaming cowbirds (M. rufoaxillaris) show
a reduction in Hp volume in the nonbreeding season compared to
the breeding season (Clayton & Reboreda, 1997), thus male Hp
plasticity is possible in cowbirds. Obviously, more research is
needed to isolate why we found sex-specific effects of captivity on
Hp volume in M. a. obscurus despite a lack of sex-specific Hp size
in wild birds of the population we studied. Future studies should
consider subspecies and within-subspecies population differences
as cowbird space use appears to depend on a number of habitat,
habitat use, and population size dimensions (Darley, 1982, 1983;

1 Using residual analysis or arcsine transformed Hp/Tel as per methods
in Reboreda et al. (1996) and Clayton and Reboreda (1997) for shiny
cowbirds yields results as per our GLM except WCF versus WCM is
significant.

Table 1
Range Size and Morphology of Populations of Eastern and Western Cowbird Subspecies

Western male Western female Eastern male Eastern female

Feeding range 550 haa 220 haa � Western subspeciesa,b

Commute feeding to breeding 7 km or �a,e 7 km or �a,e � Western subspeciesa,b

Feeding may overlap breedinga,b

Feeding sites visited Males � femalesa Males � femalesc

Breeding range 56 haa 78 haa 6.6 hab 4.5 hab

�7.9 hac 7.9 hac

20.4 had 20.4 had

Nest searching No Yes No Yes

Hippocampus 9–10.6 mm3 10.3–12.4 mm3 3.5–9.5 mm3 5–10 mm3

M � 10.4 mm3 M � 11.0 mm3 M � 5.5 mm3f M � 6.8 mm3f

Telencephalon 220–276 mm3 222–246 mm3 110–290 mm3 125–240 mm3

M � 250 mm3 M � 235 mm3 M � 160 mm3f M � 170 mm3f

Weight 41.3 g 28.3 g 43.9 g 35.5 g

Note. For Western subspecies, behavioral data refer to two western subspecies M.a. obscurus and M.a. artemisiae, while neuroanatomical data are from
M.a. obscurus only. All Eastern subspecies data are from M.a. ater.
a Rothstein et al., 1984, 1986. b Darley, 1968. c (Darley, 1983. d Dufty, 1982. e Curson, Goguen, & Mathews, 2000. f Measurements approximated
from single study presented in Figure 2 (Sherry et al., 1993).
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Dufty, 1982; Lowther, 1993; Rothstein, Verner, & Steven, 1984;
Rothstein et al., 1986). Precedents for such within-species popu-
lation differences are found in black-capped chickadees (P. atri-
capilla). A larger Hp in Alaskan chickadees compared to those from
Colorado is thought to reflect adaptations to the limited and unpre-
dictable food supply in Alaska (Pravosudov & Clayton, 2002).

Conclusion

As hypothesized, female but not male cowbirds (M. a. obscurus)
had a smaller absolute and relative Hp compared to wild-caught
counterparts when they were prevented from nest searching by
being held in large outdoor aviaries for 1 year. This effect did not
appear to be general to the whole brain as no reduction in NRot
occurred. The effects of an impoverished environment cannot
adequately explain results. Males were not affected by captivity,
and females placed in isolation chambers did not have a smaller
relative Hp volume than CF or WCF. The experiential or physio-
logical mechanism underlying the differences we found remains to
be determined. Regardless of the exact mechanism, our results are
unique in demonstrating that experimental alteration in behavior
can be associated with a sex-specific effect on Hp volume in adult
birds.
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